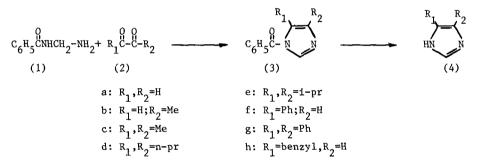
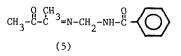
Tetrahedron Letters, Vol. 27, No. 41, pp 5019-5020, 1986 0040-4039/86 \$3.00 + .00 Printed in Great Britain Pergamon Journals Ltd.


A NEW SYNTHESIS OF UNSUBSTITUTED, 4(5),AND 4,5-SUBSTITUTED 1H-IMIDAZOLES.

A.Khalaj* and M.Ghafari

College of Pharmacy, Tehran University, Iran.


Abstract-Novel synthesis of the title compounds based on the reaction of N-(aminomethyl) benzamide with 1,2-dicarbonyl compounds is described.

During the course of another investigation it was required to examine the reaction of N-(aminomethyl) benzamide (1^1) with 1,2-dicarbonyl compounds (2a-h) in order to prepare acyl-imidazoles (3a-h) which are hydrolysed in mild acid or base to imidazoles (4a-h).

Whereas a variety of methods for the synthesis of imidazoles 4 can be found in the literature², no synthesis based on the application of this approach has yet been reported. Our exploration of this reaction for the preparation of imidazoles 4 is the subject of this report.

The cyclocondensation reactions of 1 with 2 could not be accomplished under several exploratory experiments as well as conditions which have been successful for the analogous reactions³. For example, when 2,3-butanedione (2c) was allowed to react with 1,either at room temperature or in refluxing solvents, starting materials were recovered unchanged. Furthermore, the same reaction in solvents containing a molar equivalent of hydrochloric acid³ or sodium hydroxide at room temperature again afforded unchanged starting materials, whereas refluxing conditions resulted in the hydrolysis of 1 and polymerization of $2c^4$. After a series of experiments it was found that the reaction of 2c with 1 in acetic acid at 50°C gives the desired 4,5-dimethyl 1H-imidazole ($4c^5$) in 42% yield together with the Schiff base 5 and compounds presumably arising from polymerization of $2c^4$.

It is possible that the reaction involved the intermediacy of 3c which was hydrolysed during the reaction to 4c. The same reaction was repeated with other 1,2-dicarbonyl compounds (2a,b,d-h) and the results are summarized in table I. As expected, the yields of 1H-imidazoles decreased with increased steric bulk of 2. Consistent with these results the bulky acenaphthoquinone failed to give any detectable product upon reaction with 1. Table I: Isolated yields of 1H-imidazoles.

	Substituent(s).	Crystallization	mp ℃	yield %
a	-	^С б ^Н б	90(Lit ⁶ ,89-90)	60
b	4(5)-methyl	C ₆ ^H 6	59(Lit ⁷ ,56)	48
с	4,5 -dimethyl	EtOAc	121(Lit ⁵ ,117)	42
đ	4,5 -dipropyl	EtOAc	67(Lit ⁵ ,66)	35
e	4,5 -diisopropyl	EtOAc	212(Lit ⁵ ,214)	27
f	4(5)-phenyl	EtOH	128(Lit ⁵ ,128)	34
g	4,5 -diphenyl	EtOH	230(Lit ⁵ ,231)	22
h	4(5)-benzyl	BuOAc	85(Lit ⁸ ,84-85)	39

General procedure for the reactions of 2 with 1.Synthesis of 4,5-dimethyl-1H-imidazole(4c). A solution of 1.5 gram (0.01mol) of 1^{1} and 1ml (0.01mol) of 2c in 10ml of glacial acetic acid was stirred at 50°C for 4 hrs. The solution was then evaporated and the residue was treated with 10ml of water, neutralized with ammonia, and extracted with $3\times10ml$ of ether. The combined organic exctracts were washed with saturated aqueous NaCl, dried (Na_2SO_4) and evaporated to dryness. The oily residue was then placed on a silica gel column and the column was eluted first with petroleum ether to remove the products arising from polymerization of $2c^4$. Next, the column was eluted with petroleum ether-benzene (5:5) to give 0.4 gram (42%) of 4c; mp 122°C (EtOAc) (Lit⁵, 117°C).Further elution with benzene afforded 0.34 gram (20%) of the Schiff base 5,mp 125°C (EtOH); Mass,m/e 218; IR (KBr) 3380,1800,1720,1600, 1450 cm⁻¹. ¹H NMR(DMSO-d_6): $\delta 2$ (s, 3H), 2.1(s, 3H), 4.1(d, 2H), 7.4(m, 4H), 7.9(m, 1H), 8.8(t, 1H). For the reaction of other 1,2-dicarbonyl compounds used in this work the evaporated organic extracts were not chromatographed but were crystallized from solvents indicated in table I to give the corresponding 1H-Imidazoles. References:

- 1. A.Radhakrishna, M.E. Parham, R.M.Riggs, and G.M.Loudon, J.Org.Chem., 44, 1746, (1979).
- For a general review of imidazole chemistry see M.R. Grimmet, <u>Adv.In Hetrocyclic Chem.</u>, 27, 241 (1980) and references cited therein.
- Bellas, Michael, Duvall, John (Kodak Ltd.).Brit.UK Pat.Appl. GB 2,068,362.,12 Aug,1981., C.A.,96,142856q (1982).
- 4. R.Shapiro, J.Hachmann, and R.Wahl.J.Org.Chem., 31, 2710 (1966).
- 5. H.Bredreck and G.Theilig. Chem.Ber., 86,88 (1953).
- 6. H.Bredreck, R.Gompper, R.Bangert, and H.Herlinger, Chem.Ber., 91,827 (1964).
- 7. R.Weidenhagen, and R.Hermann, Chem.Ber., 68,1953 (1935).
- 8. R.M.Kornis, J.Nyitrai and K.Lempert, <u>Chem.Ber.</u>, <u>104</u>, 3080 (1971). (Received in UK 18 August 1986)